Google Cloud GPU Instance

Instructions for setting up a GPU instance on Google Cloud

  1. Install Google Cloud SDK on your laptop:
    https://cloud.google.com/sdk/
  2. Install file by executing the following in the terminal:

     ./google-cloud-sdk/install.sh  
    
  3. Initialize gcloud in terminal (https://cloud.google.com/compute/docs/gcloud-compute/?hl=de):  

     gcloud init  
    
  4. Request limit increase for instances
  5. Put in number of GPUs & CPUs, Size:
    https://console.cloud.google.com/compute/quotas?hl=de&_ga=1.69181649.1124953923.1496188820

  6. Create GPU instance: GPU1

  7. GPU2

  8. GPU are only available in certain areas:
    GPU_Area

    • Choose Boot disk -> Ubuntu 16.04 LTS
    • Choose 30 GB HDD
      GPU3
  9. Select zone, number of GPUs & CPUs and memory
    GPU4

  10. Allow HTTP & HTTPS traffic
    GPU6

  11. Instance is set up
    GPU7

  12. Connect to instance:  

    gcloud compute config-ssh  
    

GPU8

  1. Or:

    gcloud compute ssh instance-2 --zone us-west1-b
     		ssh –i ~/.ssh/google_compute_engine USERNAME@IP_ADDRESS  
    
  2. Install GPU drivers:

    curl –O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.61-1_amd64.deb  
    sudo dpkg -i cuda-repo-ubuntu1604_8.0.61-1_amd64.deb  
    sudo apt-get update  
    sudo apt-get install cuda -y  
    
  3. Insert lines in bashrc:  

    echo 'export CUDA_HOME=/usr/local/cuda' >> ~/.bashrc  
    echo 'export PATH=$PATH:$CUDA_HOME/bin' >> ~/.bashrc  
    echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_HOME/lib64' >> ~/.bashrc  
    source ~/.bashrc  
    
  4. Download cuDNN from Nvidia Developer site -> Sign Up required
    • https://developer.nvidia.com/rdp/cudnn-download
    • Save on laptop: https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v5.1/prod_20161129/8.0/cudnn-8.0-linux-x64-v5.1-tgz
  5. Open terminal on laptop and copy file to instance:  

    gcloud compute scp cudnn-8.0-linux-x64-v5.1.tgz *INSTANCE_NAME*:~
    
  6. Go to terminal on instance and extract & install:

    tar -xzvf cudnn-8.0-linux-x64-v5.1.tgz  
    sudo cp cuda/lib64/* /usr/local/cuda/lib64/  
    sudo cp cuda/include/cudnn.h /usr/local/cuda/include/  
    rm -rf ~/cuda  
    rm cudnn-8.0-linux-x64-v5.1.tgz  
    sudo apt-get update   
    
  7. Install python packages:  

    sudo apt-get install python-pip  
    sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook  
    sudo apt-get install python-pandas python-sympy 
    
  8. Install Anaconda:  

    wget https://repo.continuum.io/archive/Anaconda3-4.4.0-Linux-x86_64.sh  
    bash Anaconda3-4.4.0-Linux-x86_64.sh   
    
  9. Set Anaconda as preferred environment:
    • which python should be usr/bin/python
    • Important:

      source .bashrc
      - Generate config file:

      jupyter notebook –generate-config mkdir certs sudo openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout mycert.pem -out mycert.pem

  • Configure jupyter:

      cd ~/.jupyter/
      vi jupyter_notebook_config.py  
    
  • Change username if necessary:

      c = get_config()
      c.IPKernelApp.pylab = 'inline'  # if you want plotting support always in your notebook
      c.NotebookApp.certfile = u'/home/ubuntu/certs/mycert.pem' #location of your certificate file
      c.NotebookApp.ip = '*'
      c.NotebookApp.open_browser = False  #so that the ipython notebook does not opens up a browser by default
      #c.NotebookApp.password = u'sha1:98ff0e580111:12798c72623a6eecd54b51c006b1050f0ac1a62d'  #the encrypted password we generated above
      c.NotebookApp.port = 8888  
    	
      source .bashrc
    
  1. Create SSH tunnel:

    ssh -i ~/.ssh/google_compute_engine -L 8899:localhost:8888 USERNAME@35.197.12.149
    jupyter notebook  
    

GPU9

  1. Open Browser and type in token:

    https://localhost:8899/
    
  2. Install Keras and Tensorflow:

    pip/conda install keras
    pip/conda install tensorflow-gpu
    conda install opencv
    
  3. If GPU process is not running, try to run a keras/tf model first:

    nvidia-smi  
    

GPU10

Sources / Appendix

https://medium.com/google-cloud/running-jupyter-notebooks-on-gpu-on-google-cloud-d44f57d22dbd
https://cloud.google.com/compute/docs/gpus/add-gpus?hl=de#install-driver-manual
https://cloud.google.com/compute/docs/gcloud-compute/?hl=de

  • One line code to create GPU instance:

      gcloud beta compute instances create gpu-inst1 --machine-type n1-standard-2 --zone us-west1-b --accelerator type=nvidia-tesla-k80, count=1 --image-family ubuntu-1604-lts --image-project ubuntu-os-cloud --boot-disk-size 30GB --maintenance-policy TERMINATE --restart-on-failure
    
Written on June 17, 2017